2-Local standard isometries on vector-valued Lipschitz function spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometries on Spaces of Vector Valued Lipschitz Functions

This paper gives a characterization of a class of surjective isometries on spaces of Lipschitz functions with values in a finite dimensional complex Hilbert space.

متن کامل

Rough Isometries of Lipschitz Function Spaces

We show that rough isometries between metric spacesX,Y can be lifted to the spaces of real valued 1-Lipschitz functions over X and Y with supremum metric and apply this to their scaling limits. For the inverse, we show how rough isometries between X and Y can be reconstructed from structurally enriched rough isometries between their Lipschitz function spaces.

متن کامل

Local means and atoms in vector-valued function spaces

The first part of this paper deals with the topic of finding equivalent norms and characterizations for vector-valued Besov and Triebel-Lizorkin spaces Bs p,q(E) and F s p,q(E). We will deduce general criteria by transferring and extending a theorem of Bui, Paluszyński and Taibleson from the scalar to the vector-valued case. By using special norms and characterizations we will derive necessary ...

متن کامل

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

متن کامل

Some Properties of Vector-valued Lipschitz Algebras

‎ Let $(X,d)$ be a metric space and $Jsubseteq (0,infty)$ be a nonempty set. We study the structure of the arbitrary intersection of vector-valued Lipschitz algebras, and define a special Banach subalgebra of $cap{Lip_gamma (X,E):gammain J}$, where $E$ is a Banach algebra, denoted by $ILip_J (X,E)$. Mainly, we investigate $C-$character amenability of $ILip_J (X,E)$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2018

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2018.01.029